
ABacus
Release 0.0.1

Data Sapience. Advanced Analytics team

Feb 08, 2024

USER GUIDE

1 Important features 3

2 Examples 15

3 Communication 17

i

ii

ABacus, Release 0.0.1

ABacus is a Python library developed for A/B experimentation and testing. It includes versatile instruments for dif-
ferent experimentation tasks like experiment design, sample size determination, results evaluation, visualisation and
reporting.

USER GUIDE 1

ABacus, Release 0.0.1

2 USER GUIDE

CHAPTER

ONE

IMPORTANT FEATURES

• Experiment design: type I/II errors, effect size, sample size simulations.

• Groups splitting.

• A/A test and evaluation of splitter accuracy.

• Evaluation of experiment results with various statistical tests and approaches.

• Sensitivity increasing techniques like CUPED, CUPAC.

Note: This project is under active development.

1.1 Installation

You can use pip to install ABacus from Github and use it for your projects:

pip install pip+https://github.com/kolmogorov-lab/abacus

Later the package will be published in PyPI and will be able to be installed with

pip install kolmogorov-abacus

Note: ABacus requires Python 3.11+.

1.2 Experiment Initialization

Before actual analysis, you have to define your experiment. Here is how you can do it:

from abacus.auto_ab.abtest import ABTest
from abacus.auto_ab.params import ABTestParams, DataParams, HypothesisParams

df = pd.read_csv('./data/ab_data.csv')

data_params = DataParams(
id_col='user_id',
group_col='groups',
control_name='control',
treatment_name='treatment',

(continues on next page)

3

ABacus, Release 0.0.1

(continued from previous page)

target='check_rub_campaign',
)

hypothesis_params = HypothesisParams(
alpha=0.01,
beta=0.2,
alternative='greater',
metric_type='solid',
metric_name='95th quantile',
metric=lambda x: np.quantile(x, 0.95)

)

ab_params = ABTestParams(data_params, hypothesis_params)
ab_test = ABTest(df, ab_params)

As you can see, you just need to describe data and your hypothesis.

For data, you have to define columns and their purposes. Required attributes are:

• id_col is observation id. It can be user_id or any other id for your rows. Note that if your observations are
somehow dependent (e.g. several checks per user), they must have the same id_col.

• group_col contains group names. If your data have two groups, then there mush be only two unique values in
this column.

• control_name and treatment_name are group names e.g. ‘control’, ‘treatment’, ‘A’, ‘B’, ‘control group’,
‘send sms’, ‘do not send sms’, etc.

• target is obviously target column containing metric of interest.

Hypothesis is described with:

• alpha— type I error.

• beta— type II error.

• alternative— alternative of hypothesis (two-sided, less, or greater.

• metric_type— metric type. There are three of them: continuous, binary, and ratio.

• metric_name— metric name, either default (‘mean’ or ‘median’) or customer (e.g. ‘95th percentile’).

• metric— function for metric calculation if metric_name is not default.

1.3 Experiment Evaluation

After the initialization of experiment, we are ready to dive into the analysis.

You have the following options for analysis:

• Statistical Inference

• Metric Transformations

• Increasing Sensitivity (Variance Reduction)

• Visualizations

• Reporting

4 Chapter 1. Important features

ABacus, Release 0.0.1

1.3.1 Statistical Inference

ABacus supports three types of metrics: continuous, binary, and ratio. Each of these types requires its own particular
methods to conduct statistical analysis of experiment.

ABacus has the following statistical tests for each type of metric:

1. For continuous metrics: Welch t-test, Mann-Whitney U-test, bootstrap.

2. For binary metrics: chi-squared test, Z-test.

3. For ratio metrics: delta method, Taylor method.

To get the result of a test, just call the appropriate statistical method on your ABTest instance:

ab_test = ABTest(...)

ab_test.test_welch()
{'stat': 5.172, 'p-value': 0.312, 'result': 0}

or

ab_test.test_mannwhitney()
{'stat': 0.12, 'p-value': 0.67, 'result': 0}

As a result, you’ll get dictionary with

• statistic of the test,

• p-value of this empirical statistic,

• result in binary form: 0 - H0 is not rejected, 1 - H0 is not accepted.

1.3.2 Metric Transformations

Sometimes experiment data cannot be analyzed directly due to different limitations such as presense of outliers or form
of distribution. Metric transformation techniques available in ABacus are:

• Outliers removal: direct exclusion of outliers according to some algorithm. There are two methods implemented
in ABacus: remove top 5% observations and isolation forest.

hypothesis_params = HypothesisParams(..., filter_method='isolation_forest')

ab_test = ABTest(...)
ab_test_2 = ab_test.filter_outliers()

print(ab_test.params.data_params.control)
200 000

print(ab_test_2.params.data_params.control)
198 201

1.3. Experiment Evaluation 5

ABacus, Release 0.0.1

• Functional transformation: application of any function to your target metric in order to make it more normal
or remove outliers. The following example includes functional transformation with sqrt function:

hypothesis_params = HypothesisParams(..., metric_transform=np.sqrt)

ab_test = ABTest(...)
ab_test_2 = ab_test.metric_transform()

• Bucketing: aggregation of target metric into buckets in order to obtain smaller number of points for analysis and
from initial distribution to distributions of means.

hypothesis_params = HypothesisParams(..., n_buckets=1500)

ab_test = ABTest(...)
ab_test_2 = ab_test.bucketing()

• Linearization: remove dependence of observations (and move from ratio target) using linearization approach.

data_params = DataParams(..., is_grouped=False)

ab_test = ABTest(...)
ab_test_2 = ab_test.linearization()

1.3.3 Increasing Sensitivity (Variance Reduction)

As you want to make your metrics more sensitive, you will mostly likely want to use some sensitivity increasing
techniques. ABacus supports the following options for increasing sensitivity of your experiments:

• CUPED (Controlled experiment Using Pre-Experiment Data) uses information about covariate independent
from experiment.

data_params = DataParams(..., covariate='pre_experiment_metric')

ab_test = ABTest(...)
ab_test_2 = ab_test.cuped()

• CUPAC (Control Using Predictions as Covariate) predicts variable that can be used as a covariate.

data_params = DataParams(..., predictors_prev=['pre_pred_1', 'pre_pred_2'],
predictors_now=['now_pred_1', 'now_pred_2'],
target_prev='pre_experiment_metric')

ab_test = ABTest(...)
ab_test_2 = ab_test.cupac()

• Stratification allows you to remove variance using not sample random sampling, but stratified sampling.

data_params = DataParams(..., strata_col='city')
hypothesis_params = HypothesisParams(..., strata='city',

strata_weights={
(continues on next page)

6 Chapter 1. Important features

ABacus, Release 0.0.1

(continued from previous page)

'Moscow': 0.6,
'Voronezh': 0.1,
'Samara': 0.3

})

ab_test = ABTest(...)
ab_test_2 = ab_test.test_strat_confint()

1.3.4 Visualizations

A picture is worth a thousand words. No doubt that you want to visually explore your experiment.

You can plot experiments with continuous and binary variables. Continuous plots illustrates not only distributions of
desired targe variable, but also a desired metric of a distribution. You can also plot a bootstrap distribution of differences
if you want to estimate your experiment with bootstrap approach.

Here is the output of ab_test.plot() method:

1.3. Experiment Evaluation 7

docs/build/html/usage.html

ABacus, Release 0.0.1

1.3.5 Reporting

As you may wish to get some sort of report with information of your experiment, you can definitely do it with ABacus.

You just need to call ab_test.report() and get information about preprocessing steps and results of statistical tests:

Report is available for any metric type. On each metric type, you will get a bit different results.

1.3.6 Everything at once

You can freely mix everything you saw above using chaining.

ab_test = ABTest(...).filter_outliers().metric_transform().cuped().bucketing()
ab_test.test_welch()

As you can see, you just need to call methods one by one. ab_test.report()will show information about all applied
transformations:

8 Chapter 1. Important features

ABacus, Release 0.0.1

1.4 Splitter

Splitter is a core instrument that allows you to get ‘equal’ groups for your experiment. Groups of an experiment are
equal in the sense of users’ desired characteristic of experiment are equal.

It is a crucial part of any experiment design - to get approximately equal groups. Splitter in ABacus not only allows
you to split your observations into groups, but also assesses the quality of this split.

df = pd.read_csv('./data/ab_data.csv')

split_builder_params = SplitBuilderParams(
map_group_names_to_sizes={

'control': 20_000,
'target': 30_000

},
main_strata_col = "city",
split_metric_col = "check_rub_campaign",
id_col = "user_id",
cols = ["check_rub_pre_campaign"],
cat_cols=["gender"],

(continues on next page)

1.4. Splitter 9

ABacus, Release 0.0.1

(continued from previous page)

pvalue=0.05,
n_bins = 6,
min_cluster_size = 500

)

split_builder = SplitBuilder(df, split_builder_params)
split = split_builder.collect()

split.head()

After the application of splitter to your data, you will see two additional columns to your data — strata and
group_name:

• strata: strata of observation created by clustering algorithm (HDBSCAN).

• group_name: groups of experiment. Control group have the same group name - control, and the treatment is
called target.

1.5 MDE Researcher

MDE Researcher makes experimental design in order to get all the information about your experiment. The main
purpose of its usage is calculation of samples size needed to detect particular effect size based on type I and II errors,
directionality of hypothesis and other parameters.

There are three components in experimental design:

• data and hypothesis parameters;

• splitter parameters;

• actual experimental design parameters (this section).

This is an example of everything at once for experimental design:

from abacus.splitter.split_builder import SplitBuilder
from abacus.splitter.params import SplitBuilderParams
from abacus.mde_researcher.params import MdeParams
from abacus.mde_researcher.mde_research_builder import MdeResearchBuilder
from abacus.mde_researcher.multiple_split_builder import MultipleSplitBuilder

data, data params and hypothesis
df = pd.read_csv('./data/ab_data.csv')
data_params = DataParams(

id_col='user_id',
group_col='groups',
control_name='control',
treatment_name='treatment',

(continues on next page)

10 Chapter 1. Important features

./experiment_initialization.html
./splitter.html

ABacus, Release 0.0.1

(continued from previous page)

is_grouped=True,
target='check_rub_campaign'

)
hypothesis_params = HypothesisParams(

alpha=0.01,
beta=0.2,
alternative='greater',
metric_type='continuous',
metric_name='mean',

)
ab_params = ABTestParams(data_params, hypothesis_params)

splitter params
split_builder_params = SplitBuilderParams(

map_group_names_to_sizes={
'control': None,
'target': None

},
main_strata_col = "city",
split_metric_col = "check_rub_campaign",
id_col = "user_id",
cols = ["check_rub_pre_campaign"],
cat_cols=["gender"],
pvalue=0.05,
n_bins = 6,
min_cluster_size = 500

)

design params
experiment_params = MdeParams(

metrics_names=['check_rub_campaign'],
injects=[1.010, 1.013, 1.015, 1.018, 1.02, 1.030],
min_group_size=5_000,
max_group_size=30_000,
step=5_000,
variance_reduction=None,
use_buckets=False,
stat_test=ABTest.test_welch,
iterations_number=10,
max_beta_score=0.9,
min_beta_score=0.2,

)

simulation of experimental design
design = MdeResearchBuilder(df,

ab_params,
experiment_params,
split_builder_params)

beta, alpha = design.collect()

As a result, you will see something similar to the following tables:

• for type II error (𝛽)

1.5. MDE Researcher 11

ABacus, Release 0.0.1

Table should be read as follow: if you think that effect size of the experiment will be 1.8% and you want to constraint
type II error by 20%, then the minimum number of observations in each group must be at least 25 000.

• for type I error (𝛼)

1.6 Auto A/B

1.6.1 ABTest

1.6.2 VarianceReduction

1.6.3 Graphics

1.6.4 Params

1.7 Splitter

12 Chapter 1. Important features

ABacus, Release 0.0.1

1.7.1 Split Builder

1.7.2 Params

1.8 Resplitter

1.8.1 Resplit Builder

1.8.2 Params

1.9 MDE Researcher

1.9.1 Abstract MDE Experiment

1.9.2 Experiment Structures

1.9.3 MDE Research Builder

1.9.4 Multiple Split Builder

1.9.5 Params

1.8. Resplitter 13

ABacus, Release 0.0.1

14 Chapter 1. Important features

CHAPTER

TWO

EXAMPLES

For more details, see the examples.

15

https://github.com/educauchy/abacus/tree/main/examples

ABacus, Release 0.0.1

16 Chapter 2. Examples

CHAPTER

THREE

COMMUNICATION

Developers and authors:

• Vadim Glukhov

• Egor Shishkovets

• Dmitry Zabavin

17

https://github.com/educauchy
https://github.com/egorshishkovets
https://github.com/dmitryzabavin

	Important features
	Installation
	Experiment Initialization
	Experiment Evaluation
	Statistical Inference
	Metric Transformations
	Increasing Sensitivity (Variance Reduction)
	Visualizations
	Reporting
	Everything at once

	Splitter
	MDE Researcher
	Auto A/B
	ABTest
	VarianceReduction
	Graphics
	Params

	Splitter
	Split Builder
	Params

	Resplitter
	Resplit Builder
	Params

	MDE Researcher
	Abstract MDE Experiment
	Experiment Structures
	MDE Research Builder
	Multiple Split Builder
	Params

	Examples
	Communication

